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Abstract. In this paper we present the results of a study of the free energy and specific heat 
of the classical vector model of ferromagnetism. High-temperature series for the free 
energy are presented as far as the 12th term in general spin dimensionality (D) and the 13th 
term for the case D = 3. The techniques used to derive these series are discussed in some 
detail. The general series is shown to reduce to that for the king Model for D = 1, and to 
agree with the expansion of the exact result for the spherical model for the case D = 00. The 
cases D = 2 and D = 3 correspond to the classical planar and classical Heisenberg models, 
respectively. We demonstrate that our general series reproduces previous results for both 
of these models, with the exception of a small disagreement with the calculated 11th terms 
of Ferer et a1 (1971, 1973). In addition, our general series extends the series for each of 
these models by one term, and our independent work for D = 3 provides one further term. 
We present the results of a ratio analysis of the series for D = 2 and D = 3, comparing 
previous work with our additional results. Although we are able to make predictions of both 
the critical point and the critical exponent, we conclude that further terms for the 
susceptibility series are required in order to refine the estimate of the critical point. We 
compare our estimate of the exponent a for D = 2 with the determination (Mueller et a1 
1976) of the exponent a for the A transition in liquid helium 11, finding striking agreement. 

I. Introduction 

The classical vector (n vector or D vector) model of ferromagnetism has been widely 
studied (Domb 1972, Stanley 1974). The model consists of D-dimensional spins 
arranged on a lattice, interacting according to the Hamiltonian 

where J is the interaction energy, m the magnetic moment of a spin, H an external 
magnetic field, and the scalar product ui . uj is taken in D dimensions. 

It is noted that the dimensionality referred to in the present work is distinct from the 
dimensionality (commonly denoted in the literature by d )  of the lattice on which the 
spins are situated. In the present work, we are considering general D, but restrict 
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ourselves to the FCC lattice, which has d = 3, although the work could easily be further 
generalised. Extension to other lattices having d = 2 and d = 3 is currently being 
undertaken. 

In this paper we present formulae for the free energy and specific heat in zero field of 
the general-D classical vector model, as a power series in K = J / k B T  on the FCC lattice. 
The coefficients in the series are functions of D. Our series extends as far as K'*, and 
we demonstrate that, as expected, the series reduces to that for the Ising model for 
D = 1, to that for the classical planar model for D = 2, to that for the classical 
Heisenberg model for D = 3 and to that for the spherical model (Joyce 1972) for D + 00. 

The series for D = 2 and 3 had previously been obtained as far as the 11th terms (Ferer 
eta1 1971,1973). We calculate the first 13 terms for D = 3 independently as a check on 
our general formula. 

We also present here a preliminary analysis of our series for D = 3 and for D = 2. 
The simple ratio analysis of the specific heat now seems to be consistent with the 
analysis of the much shorter but smoother susceptibility series. In addition, we find that 
with the extra terms we are able to revise the estimates of the critical exponent a. In 
predicting a we employ biased procedures in which we use the values of the critical 
point estimated by the above authors from the short susceptibility series. Among other 
things we conclude that, before any further refinement of the estimates of the critical 
parameters is possible, it will be necessary to extend the susceptibility expansions. 
However, once this is done and a more precise value of K, is available, the present 
specific heat series will probably produce more accurate values for a. Work on the 
susceptibility series is in progress and we shall report on it in the near future. 

2. Graph terminology 

Since the analysis uses graphical techniques, it is convenient to define at this point some 
of the terms used. The terminology is largely due to Sykes et a1 (1966). 

A graph is a series of bonds (representing interaction variables) joining points 
(characterised as nodes or antinodes according to whether there are more than two or 
precisely two bonds leading from the point to other points in the graph, respectively). 
With each bond is associated a multiplicity. These different multiplicities of bonds 
correspond to different interaction variables between the spins in question. Multiplicity 
of a bond is represented in a graph diagram by multiple lines between the corresponding 
spins (i.e. lattice points). 

It is convenient to classify and treat graphs according to topology. The topology to 
which a graph belongs may be determined by: (i) reducing the multiplicity of all bonds to 
unity and (ii) suppressing all antinodes. 

Therefore, a topology consists only of nodes, and single lines representing the paths 
or bridges joining the nodes. A realisation of a topology is a graph with zero or more 
antinodes inserted along the bridges. Figure l ( a )  illustrates a topology (the a )  and 
figure 1(b) shows a specific realisation of this topology. 

It is convenient to define a bonding of a topology which is obtained by assigning a 
specific multiplicity to each bridge. It may be represented by drawing the specified 
number of lines along each bridge of the topology. It is the property of all graphs with 
which we are concerned that both bonds meeting at an antinode must have the same 
multiplicity (see figure l(c)). For most of our calculations it is convenient to assign a 
distinct interaction variable, say K,, to each bridge. A bridge of multiplicity r cor- 
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( U )  I bl IC) 

Fiplur 1. ( a )  The a topology; (b )  realisation of the a topology; ( c )  bonding of the CY 

topology. 

responds to a variable w,(K,) where 

and where the 1 ’ s  are modified spherical Bessel functions. The relations between the 
various w, variables and the rules for determining which bondings of a given topology 
contribute to the series at a given order are explained by Domb (1976). 

3. Computational techniques 

We calculate the free energy as 

F = -kBT In Z 

where Z is the partition function, defined as usual by 

Z =  c exp(-X/kBT). 
spins 

(3.1) 

Our expansion for Z is the star cluster expansion (see for example Domb 1974, 
Sykes and Hunter 1974) in which only multiply connected or star graphs need be 
considered. The expansion has the form (Domb 1972) 

In Z = anwn 
n 

(3.3) 

where 

In the notation of Domb (1972) we write the coefficients a, in the form 

an = C g l y p l x  
IC,  

x. Y 

(3.5) 

where plX is the number of ways of embedding a particular star graph x ,  having 1 lines, in 
the lattice (i.e. the weak lattice constant of x )  and g f y  is a weightfunction depending 
primarily on the bonding y of the topology to which x belongs. The gl ,  have a simple 
dependence on the lengths of the bridges in x ,  but the non-trivial coefficients or intrinsic 
weights in gl, depend only upon the bonding of the topology and the sub-topologies into 
which it can be decomposed and not upon the realisation x. Thus equation (3.3) 
contains an implied sum over all topologies. For each topology it is necessary to sum 
over all bondings (subject to the restrictions discussed below) and over all realisations of 
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each bonding. We shall henceforth refer to a particular realisation of a particular 
bonding of a topology simply as a graph. 

The lattice constants, which are independent of D, are well known, having been 
calculated by Sykes er a1 (1967, 1972) in their work on the Ising model. It is, therefore, 
only necessary to calculate the weight functions gl,. 

A particular graph will contribute to the expansion (3.3) only at order n and above, 
where n is the total number of lines in the graph. Consider, for example, the three 
graphs shown in figure 2. Graphs ( a )  and ( b )  are different bondings of the same 
realisation of the 6' topology. Graphs ( a )  and ( c )  are different realisations of the same 
bonding of the 6' topology. These three graphs will begin to contribute to the series (3.3) 
at order 6 ,9  and 10 respectively. Since free energy graphs must correspond to overlaps 
of polygons (Domb 1972) and since the smallest polygon is the triangle, a graph with a 
quintuply bonded bridge cannot occur until order 15. Therefore, in our calculations we 
need consider only bondings with multiplicities up to 4, since the present work extends 
only to order 13. 

Although, in the final analysis, we naturally wish the reduced interaction strength K 
to be the same between all pairs of nearest neighbours, it is convenient, as a cal- 
culational artifice, to assume that the interaction along each bridge of a topology is 
unique. (Recall that a bridge is a path joining two nodes.) For example, in figure 2(c) 
the interactions along the three bridges a, b, c of the theta graph may be labelled 
K,, Kb, K,. Once this has been done, all the intrinsic weights for a given bonding can be 
expressed in the same form-for the bonding of figure 2 ( c )  this has the form 

(3.6) ( c  12 1 ) 8 w 1 (KO ) w2 (Kb ) w 1 (Kc ). 

IQ1 lbl IC1 

Figure 2. Examples of 6 graphs. 

By using the techniques described below, it was possible to obtain the weights for all 
bondings required in the free energy to order 13. The final step in the calculation was 
then the replacement of the w,(K,) etc. with one w, factor for every line in the bridge. 
Thus the graph of figure 2(c) contributes 

(3.7) 

which is further simplified by substituting for w 2 ( K )  in terms of w(K) defined in (2.1). 
In the next section we shall consider methods of obtaining the intrinsic weights and 

hence the weight functions gI,. For simplicity we will refer to the intrinsic weights as the 
weights. 

(c**l)Bw w 1 W : ( K )  

4. Weight determination 

The weights may be divided into three classes, according to the relative ease with which 
they may be obtained. The easiest of all are for the so-called ladder topologies, which 
may be obtained from simpler topologies by the replacement of a single interaction by a 
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pair of parallel interactions. An example is shown in figure 3. Domb (1972, 1976) has 
shown that the weight of such a ladder topology may be obtained simply by multiplying 
the weight of the root topology by a coefficient which is a simple function only of the spin 
dimensionality D. By starting from the known weights for the polygon (Bowers 1968), 
it is possible to generate, by successive ladderings, the vast majority of the weights 
which are required. 

Figure 3. Example of ladder technique. 

The problem of performing the ladder transformation lends itself easily to automa- 
tion, provided only specific numerical results for a given value of D are required. A 
given bond in the topology to be laddered is chosen and the weight of each bonding of 
the new topology formed by laddering each bonding of the old topology is generated 
and stored in some suitable format. We note that a given bond can actually be laddered 
in three distinct ways, since in drawing a topology, vertices of degree two are suppres- 
sed. (See figure 4.) 

Figure 4. The three types of ladder. 

To obtain the weights for general D, it is necessary to perform the explicit algebraic 
manipulations. We found that a preliminary computer laddering of each topology for 
D = 3 was invaluable in helping us to identify every one of the large number of bondings 
contributing to the free-energy series. 

A calculation of the contribution of a specific graph using the ladder transformation 
is given in appendix 1. Clearly a necessary condition for a topology to be amenable to 
treatment by the laddering technique is the presence within it of a ‘bubble’ (two bridges 
having common nodes as endpoints). 

Certain topologies do not contain such a bubble and to obtain the weights of such 
topologies it is necessary to devise other methods. Domb (1972,1976) has shown that 
the weights for many such topologies can be obtained by considering the effect of 
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allowing the interaction along one bridge to become infinite. This will cause the two 
vertices at the end of this bridge to coalesce, forming a bonding of a different topology 
with the same cyclomatic index. Further, the weight of the new configuration so 
obtained must be equal to the sum of the weights of all bondings of the original topology 
in which the multiplicity of the bridge to be coalesced varies from zero to infinity, and 
the multiplicity of all the other bridges remains constant. However, as noted above, the 
free-energy weight of any graph which does not correspond to an overlap of polygons is 
zero, and this will eliminate most of the terms in the aforementioned sum. 

Consider, for example, the bonding of the cy topology shown in figure 5 ( a ) .  To 
obtain its weight, we allow the interaction along the bridge labelled ‘ab’ to become 
infinite. This yields the y bonding shown on the left-hand side of figure 5 ( b ) ,  whose 
weight can be obtained by laddering the 8 graph (see figure 4). We equate this to the 
sum on the right-hand side in which term one is a 6graph (the broken line implying zero 
multiplicity), term three is the required weight, and term two and all terms higher than 
three have zero weight because of the ‘polygon overlap’ rule. 

Figure 5. The infinite bond technique: ( a )  bonding whose weight is required; i b )  symbolic 
equation produced by making bond ab infinite. 

In most cases it was possible to obtain an equation involving only one unknown by 
using this ‘infinite bond’ technique. By this means the weights of the majority of 
bondings for non-ladder graphs were obtained. In addition, each non-ladder weight, 
once obtained, allowed several more weights to be calculated by using the ladder 
technique again. Figure 6 shows a J graph which can be obtained by laddering an a.  

Figure 6. Deritvation of J graph by laddering n. 

Three bondings were found whose weights could be obtained neither by laddering 
nor by the ‘infinite bond’ method. These bondings, shown for reference in figure 7, 
possess such high symmetry that any attempt to use the ‘infinite bond’ technique leads 
to a situation in which the number of unknowns is greater than the number of equations. 
A third approach has been devised to determine these weights (Domb 1976). This 
method is demonstrated in appendix 2 using the highly symmetric ‘octahedron’ 
topology (figure 7(b ) ) .  



Classical vector model: high-temperature series T >  T, 2117 

Figure 7. Bondings whose weights cannot be obtained by either the laddering or the infinite 
bond technique: ( a )  the (222222) a; (b) the (singly bonded) octahedron; ( c )  the (singly 
bonded) complete graph on five points. 

5. Generation of the series 

The combination of the weights and the lattice constants to obtain the series of equation 
(3.3) presents a non-trivial problem since each particular graph will contribute with a 
given weight (depending only on the bonding) but with a particular combination of the 
w variables (depending on the realisation), as discussed in 9 2. In performing computer 
calculations for a specific value of D, these problems are easily overcome by storing the 
weight in a multidimensional array, and using the power of the various w variables at 
which it will contribute as the coordinates of the weight within the array. In performing 
calculations for general D, however, such an approach is not feasible since the weight to 
be stored is not a number, but an algebraic expression. For example, the contribution to 
the partition function from the particular 8 graph shown in figure 2 ( b )  is 

(5.1) 

Using the expressions for w2 and w3 as functions of wl given by Domb (1972) the first 
contribution of this graph will be: 

(lattice constant) x @’CO - l )w:w;w3.  

1.c. x +D’(D - 1)[D2/(D +2)7 [DZ/ (D + 2 ) ( D  +4)lW?. (5 .2)  

Since wt and w3 are actually power series in w l ,  there will also be contributions from 
this graph at higher powers of w l .  A further complication arises since the free energy is 
proportional to the logarithm of the partition function (2) rather than 2 itself. To 
obtain the contribution to In 2 from a given bonding, i.e. the weight function g ,  given its 
contribution to 2, it is necessary to allow for the contributions from all possible 
combinations of simpler graphs into which the bonding can be decomposed. A typical 
decomposition is shown in figure 8. Thus, returning to the graph of figure 2 ( b ) ,  its 

Q P i Q +  P 
a +  D+D \ 

Figure 8. Example of decomposition of a bonding. 
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contribution to In 2 is: 

D'(D - 1) 
(l.c.){ w: w: w3 + ;(3)D3 w: -4(2)D2(D - 1) w:wz 

(5.3) 

The four terms in expression (5.3) refer respectively to the 0 bonding itself, the 
overlap of three triangles (note the presence of the f factor from the logarithm 
expansion and the combinatoric factor of 3), the overlap of a triangle with the simpler 
(121) 8 bonding, and the overlap of a singly bonded and a doubly bonded triangle. 

As was the case in the previous calculations, for a specific value of D it is relatively 
easy to keep track of the contributions from the various graphs, on a computer, but for 
general D, unless one is in possession of a program which will allow manipulation of 
rational fractions of polynomials, it is necessary to perform the calculations manually. 
In the course of a manual calculation, it would be very easy to neglect one or more 
terms. For this reason, when performing the general D calculations, use was made of 
the computer results for D = 3 to obtain a list of all terms contributing to the series. The 
algebraic manipulations required to obtain the free-energy series were then performed 
manually on each term. It was originally felt that, due to the complexity of the 
mathematics, extension of the general D series beyond w:' would not be a feasible 
proposition. However, the authors have recently come into possession of computer 
programs (J L Martin, private communication; E W Grundke, private communication) 
which will enable the algebra to be performed automatically, and will be in a position to 
report the general form of the 13th term in the series shortly. 

The free-energy series obtained by the methods described above is presented in 
table 1. Substitution of D = 1 yields the Ising model results (Sykes et a1 1967) whilst 
D = 2 and D = 3 yield agreement with previous results for the classical planar model 
(Bowers and Joyce 1967, Ferer et a1 1973) and the classical vector model (Ferer et a1 
1971, Gerber 1975) respectively. 

We note that the denominator of the nth term in the series appears to take the 
general form 

where J = INT(n/2). 
We present this form, which appeared as an empirical result of our calculations, as 

an hypothesis. It has been checked against the Sykes et a1 (1972) exact series for the 
Ising model, and was used to check our computer calculations for D = 3. It may be of 
use to future workers, if only to check the accuracy of their work. 

6. Analysis and discussion for D = 2 

Our calculation of the series in general D represents an extension of the general case by 
three terms (Stanley 1974). However, for the specific case D = 1 the series is already 
known to 14th order, while for the cases D = 2 and D = 3 our work provides one 
additional term. 
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Table 1. The first twelve terms in the high-temperature, free-energy series for the classical 
vector model on the FCC lattice. 

Coefficient of K"-numerator. 

n 0 
Power of D 

1 2 3 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

6 
24 
264 
1680 
93120 
690816 
64617984 
2083110912 
275425689600 
2321270341832 
9541484795658240 

n 4 

- 
126 
720 
104496 
735840 
108435072 
3913860096 
676673310720 
5597656289280 
32290078258888704 

5 

- 
37368 
244944 
69058752 
2925688320 
698049484800 
5648977010688 
48532763592818688 

6 

- 
4272 
26208 
20823888 
1115272128 
394070319360 
3107553960192 
42793815565025280 

7 

8 2996340 165294 - - 
9 230261856 24581568 1065120 - 

10 133158505728 27647463264 3456505344 238638120 
11 1019062454784 204634856448 24689231424 1643689872 
12 24642176360239104 9764353972598784 2732299175361024 544738087572480 

n 8 9 10 11 

- - - 10 6980904 
11 46392192 - - - 
12 76918509345408 7514107489152 482781787392 18340982400 

n 12 

12 31 1886144 

I 

i = l  
Denominator: n n ( D  + 2 j  - 2)"T'"-"'' , where J = INT(n/2). 

In this paper we present only a preliminary analysis of our specific heat series for the 
two cases D = 2 and D = 3. Our general series, when evaluated for D = 1, exactly 
reproduces the first 12 terms of the king model specific heat series of Sykes et aZ(1972), 
the analysis of which is quite complete. Our series also agrees exactly with the 
expansion of the exact solution of the spherical model (Berlin and Kac 1952, see Joyce 
1972 for the expansion). 

For D = 2 the first nine terms of our series agree exactly with the specific heat series 
for the classical planar model calculated by Bowers and Joyce (1967) who also 
calculated eight terms of the susceptibility (,y) series. The 10th term of our series agrees 
exactly with the 10th term calculated by Ferer et a1 (1973). However, the 1 l th  term of 
our series is in slight disagreement with theirs, the discrepancy occurring in the 11th 
significant figure. A discrepancy of this relative magnitude will not affect the 
conclusions one is able to draw from the standard methods of series analysis. 
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Bowers and Joyce estimated the critical temperature to be 

based on the analysis of their eight-term susceptibility series. Using that value of K,  
they then estimated the specific heat exponent a to lie in the range 

O c a  <A. 
Ferer et ai, with two additional terms in both ,y and CH, estimated 

K,' =4*820*0*003 

= -0.02 * 0.03. 

The reason for the rather significant shift in the ranges estimated for a is easily seen 
from the plot of the sequence a, against l / n  in figure 11. The rapid change in slope 
around n = 9 suggests that the series was rather slow in settling down to its asymptotic 
behaviour. Indeed, one may well ask whether it has settled down by order 12! 

In table 2, we present the series coefficients b, for the free energy 
m 

F = - k T l n Z =  b,Kn 
n = 2  

and a, for the specific heat 

a2 W 

CH=kK2- - lnZ=  a,K". 
aK2 n = 2  

We also tabulate the ratios 

(6.1) 

e, = nr, - ( n  - l)rn-l (6.4) 

Table 2. Series coefficients and ratio analysis for D = 2 classical vector model free energy 
and specific heat. 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

1.5 
2.0 
4.03125 
9.75 

26,35416 
77,9375 

247.1749269 
825,9226707 

10310.834928385 
3 7990.74045 

2872,238384 

3.0 
12.0 
48.375 

195.0 
790.625 

3273.375 
13841.7958933 
59466.4322916 

258501.4546875 
1134191.84212235 
5014777739598253 

- 
4.0000 
4.0313 
4.0310 
4.0545 
4,1402 
4.2286 
4.2962 
4.3470 
4.3876 
4.4214 

__ 
- 
4.1250 
4.0300 
4.1719 
4.6547 
4.8471 
4.8365 
4,8048 
4.7931 
4.7942 

- 
0.48963 
0.34544 
0.18154 
0.04708 
0.01279 
0.01843 
0.02186 
0.01870 
0.01312 
0.00777 
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of successive pairs of ratios on a l / n  plot to the intercept l / n  = 0, and the sequence of 
estimates 

a, = nr,K, - n + 1 (6.5) 
for the critical exponent a of the specific heat. Using the well-known ratio method 
(Hunter and Baker 1973), if the series (6.2) represents a function which is singular at 
K = K, with an asymptotic form 

CH A( 1 - K/K,)-", (6.6) 

r, = a,/a,-l  = [l +(a - l)/n]Ki' (6.7) 
when plotted against l / n  should tend to the limit Ki '  with a limiting slope (a - l)/Kc. 
The slopes of consecutive line segments of a l / n  plot could be used to find an 'unbiased' 
sequence of estimates for a, but if a reliable estimate of K, is known, the sequence ( 6 . 3 ,  
which gives the slope of the line segments joining each successive point r, to the 
predicted intercept KF1, is a more rapidly converging sequence. It is 'biased' in the 
sense that this sequence, and hence predictions based upon it, depends upon the choice 
of K,. 

The sequences r, and e, for D = 2 are plotted in figure 10. The corresponding 
results for the Ising model (D = 1) are shown for comparison in figure 9. The new term 
for the specific heat shows the necessary change in sign of the slope in the e, plot which 
indicates that the specific heat is beginning to settle down and show some compatibility 
with the Ferer et a1 prediction for the critical point based on the susceptibility 
expansion. The oscillation or bump in the extrapolant plot is probably caused by 
contributions from the next-strongest singularities. Pad6 analysis indicates that there is 

then the ratios of successive coefficients 

9L- 

92- 

9 0- 

8 8  - 
86- 

8L - 

\ 

1 I , ,  , 1 1 I I 

1L 12 10 9 8 7 6 
l h -  

Figure 9. Ratio analysis: D = 1 classical vector model (Ising) specific heat. 
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Kc-' =l 813lLower bound? 
.. 
. Bowers and I ~ - 
.,' Joyce . - I  K;' =l  820(Ferer et a / )  

. e - -  

,601 

Mueller 
et ol . 

r, 

Ferer 
'et 01 , ' 

\ e, iCH) 

-0.05# 

\ 

$ 1 ,  I 1 

1 1 1 1  I L 

1 2 1 0 9 8  7 6 
n 

Figure 10. Ratio analysis: D = 2 classical vector model (classical planar) specific heat. 

a pair of complex singularities near the imaginary axis at about It0.3i. Attempts to 
transform the series, so that the interfering singularities are even further from the 
origin, successfully remove the bump but leave sufficient curvature in the r,  and e,, plots 
that accurate extrapolation is difficult. 

The sequence a ,  is plotted in figure 11. It is quite significant that the new point 
indicates a straightening of the a,  plot. There would now seem to be even stronger 
evidence that a is small but negative-substantially in agreement with the Ferer et a1 
prediction. However, using their value of K,' = 4.820 our conclusion would be that a 
is closer to -0.05. We find it hard to believe that the data are any longer compatible 
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with a logarithmic singularity and would suggest that 

a = -0.05 * 0.03 

where the confidence limits might be over-optimistic. Further extension of the suscep- 
tibility series and refinement of K ,  would be essential before a more definitive statement 
could be made. We find both the Ferer et a1 result and our own additional term in 
striking agreement with the Mueller et a l ( l 9 7 6 )  determination of the exponent a at the 
A point in liquid helium 11, namely 

a = -0.026 * 0.004. 

This agreement between an experiment on liquid helium and a classical model is an 
impressive piece of evidence in favour of universality. Betts and Lothian (1973) have 
shown that liquid helium and the XY models (both quantum and classical) fall into the 
same universality class-i.e. D = 2, d = 3 .  

Pad6 approximant analysis of the specific heat series is quite indeterminate, as 
indeed was the case for the Ising model (Hunter 1969). Once again we find evidence 
that the Pad6 approximants of the second derivative of the specific heat series are much 
better behaved than those for the undifferentiated series, again suggesting that the 
additive terms in the form of the specific heat function are much more important than in 
the case of the susceptibility (Hunter 1969). However, we regard the ratio analysis as 
far more significant for our specific heat series. 

7. Analysis and discussion for D = 3 

In table 3 we present the series coefficients for the free energy and specific heat, along 
with the specific heat ratios and extrapolants and the sequence of estimates a, for the 
critical exponent, for the classical Heisenberg model ( D  = 3 ) .  

The first ten terms of our series again agree exactly with those of Ferer eta1 (1971),  
but we again find a discrepancy in the 11th significant digit of the 11th term. The 12th 

Table 3. Series coefficients and ratio analysis for D = 3 classical vector model free energy 
and specific heat. 

- - - 2 1.0 2.0 
3 04388 5.33 2.6666 - 0.51944 
4 1.1888 14.266 2.6750 2.7000 0.36975 
5 1.8962962 37.925925 2,6584 2.5918 0.18599 
6 3,363762490 100.91287478 2.6608 2.6729 0.02777 
7 6.506478540 273,2720987 2.7080 2.9913 -0.03019 
8 13.47476733 754.5869738 2.7613 3.1344 -0.04306 
9 29.3907834 2116.136405 2.8044 3,1489 -0.05140 

10 66.72564152 6005.307737 2.8379 3.1394 -0.06271 
11  156.4127372402 17205.4090964 2.8650 3.1367 -0.07487 
12 375.9299983 49689,48541 2.8880 3.1408 -0.08572 
13 926.2679992 144497.8079 2.9080 3.1480 -0.09429 

f Assuming K;' = 3.1753. 
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term, calculated from our general formula and independently by computer, is new, and 
the 13th term, at present obtained only by computer, is also new. 

Bowers and Woolf (1969), on the basis of their eight-term susceptibility series, 
estimated 

K,' = 3*18016*0*00007 

and then used this to estimate a specific heat exponent: 
- ; s a 6 - L  16. 

Ferer et a1 (1971), with their longer series, estimated 

K;' =3*1753*0.0020, 

from which they obtained a graphical estimate of 

(Y =-0*14rt0*06 

for the critical exponent. 
Figure 12, which is analogous to figure 10, shows the sequences r, and e, for D = 3, 

along with the corresponding quantities from the ten-term susceptibility series of Ferer 
et al. Our two extra points again show a change in sign of the slope of the e, plot, 
suggesting that, as in the case of D = 2, the series is beginning to settle down and show 
some compatibility with the Ferer et a1 susceptibility prediction. 

The sequence a, is plotted in figure 13. Using the Ferer et a1 prediction of 
K,' = 3.1753, we again observe a straightening of the a,  plot, and note that it is now 
pointing to a value of a = -0.204. If we use instead the value KF' = 3.167, suggested 
by x extrapolants of figure 12, we obtain an estimate 

(Y -0.148, 

closer to the Ferer er a1 prediction. 

310 t 
I r, 300 

290 

2 '1 70 

\ 
'1 

L , I 1  t I 

0 13 11 10 9 8 7 6 
n 

Figure 12. Ratio analysis: D = 3 classical vector model (classical Heisenberg) specific heat. 
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Figure 13. Sequence of biased estimates a,, for critical exponent: D = 3 (classical Heisen- 
berg model). 

This value of K,' is probably a lower bound. It is drawn by a linear extrapolation of 
the ,y extrapolant curve, and since this curve might reasonably approach the ( l / n  = 0) 
axis with zero slope (Hunter and Baker 1973) we would expect the actual intercept to be 
a little higher. 

It is clear that a more accurate estimate of the critical point is required. We again 
require further extension of the susceptibility series. 

8. Conclusions 

Our analysis for the classical planar and classical Heisenberg model series indicates that 
both of these series appear to be beginning to settle down by the 12th term. In both 
cases, the plots of the ct,, sequences appear to be approaching straight lines. Work on 
the 13th term of our general series is almost complete, and this will enable us to add an 
extra point to the graphs for D = 2, as well as providing a useful check on our computer 
results for D = 3. 

However, it has become evident that any further extension of the specific heat series 
will be of limited value until a better estimate of the critical point is available. This will 
be obtainable if the better behaved series for the susceptibility can be extended. Work 
is presently in progress on the susceptibility series. We hope to extend this series at least 
to order 12 for the cases D = 2 and D = 3. 

Although the series presented in table 1 is general in D, its applicability is limited to 
a specific lattice-the FCC lattice. However, now that we have obtained the weights gt, 
of equation (3.5) it is a simple matter to derive the corresponding series for any other 
lattice provided only that the lattice constants plX are known. We are currently in the 
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process of extending the present work to a number of other lattices, of lattice 
dimensionality d = 2 and 3, and will report the results shortly. The susceptibility series 
for these other lattices will also be presented. 

Appendix 1. Calculation of the contribution of a specific graph 

Consider the graph shown in figure Al(a) .  By removing the antinodes, we see that it is a 
realisation of the (121) bonding of the 8 topology (figure Al(b)). 

@D 
Figure A l .  ( a )  The @graph whose weight is calculated in the appendix; ( b )  the topology of 
which this is a realisation. 

To determine the contribution of this graph, we require: 
(1) the lattice constant of the 8 realisation consisting of three bridges of lengths 1,2 

(2) the weight of the (121) bonding of the 8 topology. 
We obtain the weight by noting that the given bonding can be obtained from the 

doubly bonded polygon by means of the ladder transformation. The polygon weight is 
(D + 2)(D - 1)/2 (Bowers 1968) and the relevant transformation coefficient is di2?, in 
the notation of Domb (1976), which has the value 

and 3. This is 384 (Sykes et a1 1967, 1972); 

d\2: = 2 0 1 0  +2. 

The weight of the (121) theta bonding is thus 

The contribution to the partition function from any realisation of this 8 bonding is 
thus, from equation (3.6), 

lattice constant x D(D - l)wl(K,)w2(Kb)wl(K,). 

For the specific realisation under consideration, bridge a contains three interactions, 
bridge b contains one, and bridge c, two. We therefore identify: 

so the contribution from this particular graph is 

384 D(D - l)w:(K)wz(K). 
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We now note from equation (3.4) (see, for example Abramowitz and Stegun 1964) 
that 

. . .  K K 3  2KS 
w l ( K )  = 5- D2(D + 2 )  + D3(D + 2)(D + 4) - 

and 

+... K 2  2~~ 
W 2 ( K )  = D ( D  + 2 )  -D2(D + 2)(D + 4 )  

so the contribution becomes: 

+ . I  .] K 5  5K7 K 2  2~~ 
3 8 4 D ( D - l ) [ ~ - ~ ,  (D + 2 )  +. . . I [  D(D + 2 ) - D 2 ( D  + 2)(D +4) 

+. 4 .] K 7  ( 7 0  + 24)K9 
D + 2 ) - 0 7 ( 0  + 2 1 2 p  + 4 )  

= 384 D(D - 1 ) [ D 6 (  

We note that, as predicted, the graph shown, which has seven lines, contributes to 
the expansion first at K 7 ,  and subsequently to every second term. These are general 
features of the expansion. 

Appendix 2. Weights of highly symmetric bondings 

The ‘octahedron’, a cyclomatic index seven topology (figure 7 6 ) ,  provides the most 
difficult weight determination problem we have yet encountered. If one attempts to 
apply the infinite bond technique to obtain the weight of the bonding having single 
multiplicity on every bridge, one discovers that the equation so obtained also contains 
the weight of the bonding containing one triple bridge. Because of the high symmetry 
(every bridge is equivalent) the procedure can be applied in only one way, leading to a 
single equation in two unknown weights. 

Instead, from first principles we deduce the general form of the weight of the 
bonding we seek as it appears in the partition function for the octahedron. Stanley’s 
(1968) result, that even for finite graphs there exists a finite limit (analogous to the 
spherical model limit for infinite clusters) for In 2 as D + 00, allows us to determine all 
but one unknown coefficient in the general form. Finally, using the value of the weight 
when D = 1 ,  obtained for the Ising model (Hunter 1967), we can completely determine 
the weight. These methods and their basis are described in more detail in Domb (1976). 

From first principles the partition function for a graph G is 

(A2.1) 

where ma; is the ath component of a D-dimensional classical spin eri. For a graph G, the 
index i runs over all the vertices of G while sums or products over the pair ij are 
assumed to run over all allowed interactions-or bonds-in G. The coefficient of 
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. . is clearly 

there being one factor for each bond in the graph. For classical vectors the averages are 
obtained by integrating each spin over all possible orientations in D-space. 

Following Domb, we represent each factor uaiuai in the expanded form of (A2.2) by 
a coloured bond on the graph, using a different colour for each of the D different values 
of cr. One can then show that in the averaging process only those terms survive which 
correspond to configurations in which every vertex is of even order in each colour. 
Further, each vertex makes a contribution according to its total order: two-vertices 
make contributions proportional to 1/D, four-vertices proportional to l / D ( D  + 2), 
six-vertices proportional to l / D ( D  +2)(D +4), etc. 

Hence to find the form of the D dependence of the weight corresponding to a 
particular bonding of G, we need to multiply together the form of the contributions 
from each vertex and a combinatorial factor accounting for the number of possible 
colourings subject to the constraints already described. The number of monochromatic 
colourings is proportional to (3, dichromatic to (3, n-chromatic to (3. 

Since every vertex must be of even order in each colour, every permissible colouring 
of a bonding must be decomposable into an overlap of monochromatic polygons and/or 
monochromatic double bonds. For example, the ‘most colourful’ colouring of the 
singly-bonded octahedron (figure 7b)  contains four colours, corresponding to an 
overlap of four different triangles each of different colours, while for the entirely 
double-bonded a graph shown in Figure 7 ( a )  it would contain six colours-the six 
different double bonds each being of a distinct colour. 

Hence the general form of the weight W for the singly-bonded octahedron is 

W =[1 /D(D+2) l6 [aD+bD(D- l )+cD(D-1) (D-2)  
+dD(D-1)(D-2)(D-3)]K’2  

= [ l / D S ( D  + 2)6][cr +PD + rD2 + SD3]K j 2  

=[D7/(D+2)6] [a  + P D + r D 2 + S D 3 ] ~ : 2 .  (A2.3) 

The expansion of 2 will contain terms corresponding, among others, to every 
singly-bonded subgraph of the octahedron which contains only even-order vertices. In 
taking the logarithm, all such terms are multiplied by each other in all possible ways. We 
find the coefficient of corresponds to the sum of the products of weights of 
subgraphs (represented diagramatically) with the coefficients shown: 

+ 
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Substituting the known weights of all the subgraphs and collecting terms we obtain 

-6D2+42D3+6D4]+. . . . (A2.5) 

Stanley’s proof that if the interaction J is replaced by AJ*, where A is of order D in 
the spin dimensionality, then In Z/A tends to a finite limit as D tends to 0;) implies that, 
when expressed in powers of wl ,  no term in the In Z expansion can have a coefficient of 
order greater than D. Expanding the coefficient in equation (A2.5) and separately 
equating the coefficients of D4,  D3 and D2 equal to zero gives 

6 = 2 ,  y = 59, p = 296 (A2.6) 

respectively. Finally using the Ising model results (Hunter 1967) that the coefficient of 
w i z  in the In 2 expansion for the octahedron is 20, enables us to find a = 372. Thus the 
difficult octahedron weight is found to be 

w = ( ~ 1 1 1 1 1 1 1 1 1  lldoctahedron = - O7 (372 + 2960 + 59D2+ 2D3). 
(D + 2)6 

(A2.7) 

When we substitute D = 2 into (A2.7) we obtain W = 38 which we have checked using 
other methods peculiar to the two-dimensional case (Domb 1976). 
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